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I. Introduction 

In a true educational experiment, the experi- 

mental units (e.g., individuals, classes, schools, 
pre - school centers) are randomly assigned to the 
different treatments, or programs, under study. 
As the number of units per treatment group in- 
creases, the pre -experimental mean differences 
among the treatment groups on any background vari- 
able tend to become small. As a result of this 
"natural equation of groups," differences among 
the post- treatment outcomes can, with reasonable 
assurance, be attributed to treatment effects. 

For a variety of political, practical, and 
ethical reasons, however, randomized experiments 
are rarely feasible in educational settings. Re- 

cently, (Cohen, 1973) even the desirability of 
such experiments has been called into question. 
These practical and theoretical considerations 
have led to the implementation of what Campbell 
and Stanley (1963) have referred to as quasi - 
experiments. In these designs, the experimental 
units are not randomly assigned to treatments. 
As a result, the pre- treatment equation of groups 
is not assured. Observed differences among the 
post -treatment outcomes are attributable to pre- 
treatment differences in addition to the effects 
of the treatments. We must now resort to statis- 
tical techniques to adjust away the relevant pre - 
experiment differences among the treatment groups. 
Because of the assumptions required by these tech- 
niques and certain artifacts involved in the esti- 
mation of effects, interpretation of the results 
of these analyses requires extreme care. Some 
authors (Lord, 1967; Campbell and Erlebacher, 
1970) are quite pessimistic about the ability of 
quasi -experiments to yield any useful and valid 
inferences. 

In this paper, we introduce the value -added 
strategy as an alternative approach to the analy- 
sis of data from educational quasi -experiments. 
This technique was developed in response to 
shortcomings inherent in currently existing ad- 
justment strategies, such as analysis of covari- 
ance, matching, standardization (Wiley, 1970), 

gain scores, and analysis of residuals. 

II. An Alternative Strategy - Value -Added Analysis 

The basic idea of the value -added analysis is 

to estimate for each subject in each experimental 
program the post -test score he would have obtained 
had he not been in any experimental program. Com- 
paring this artificially- constructed post -test 
score with the actual pre- and post -test scores, 
we can estimate how much of his growth is the re- 
sult of "natural" maturation, and how much is the 
value -added by the program in which he was en- 
rolled. Smith (1973) used this approach to esti- 
mate overall effects of Head Start. We have re- 
fined his method and provided more theoretical 
underpinning. 

A. Theory 

Let 
Y. 

and Yij represent the observed pre- 

and post -test scores on some measure for indivi- 

dual i in treatment, or program, group j. Let 
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and T be the corresponding true scores. 

We assume the classical test theory model that 

Y. = T. + e. 
13 

= T + Y for i= 1...n. 
j =1...J 

where E(e.. Tij)= E(e, i.)= E(e..e,i.) =0 and 

2 
Var (e.J T..) = Var (e1ITi.) = 

Let us define: 

(1) 

(2) 

aij =age of individual i in group j at pre -test 

=age of individual i in group j at post -test 

Mij= component of true scores, Tij and T rep- 

resentable as a linear function of measurable 
covariates other than age 

Uijenonmeasurable component of the true scores, 

T. and Tij, which is independent of both 

age and other measurable covariates. 

For any specific individual i in group j, a.., 

ai., M. and U.. are considered fixed. They do 

vary, however, over subjects in the population of 
individuals from which the sample for treatment 
group j was chosen. Let us define: 

2 
E(U..) = U. and Var (Uij) = a 

U 
(3) 

Further, since independent of age and the 

other measurable covariates, it follows that 

Cov(U..,a..) = Cov(U..,a = Cov(U..,M..) =0 (4) 

For the simplest case, we assume that growth 
in the domain under study is a known linear func- 
tion of age, measurable covariates, and nonmeas- 
urable covariates. We can, then, represent the 
true score for subject i in group j at the pre- 
test as: 

T = + ßa + M + U (5) 

Further, if there is no intervention between the 
pre -test and post -test - i.e., if only natural 
maturation is operational - then we can represent 
the post -test score as: 

(6) 

Let us define a variable where there is no in- 

tervention between pre- and post -test: 

= T T. (7) 

Clearly, represents the growth increment 

for subject i in group j which is attributable 



solely to natural maturation. Specifically, in 

terms of the growth model represented by equations 
(5) and (6), 

= B (a - aij) (8) 

In general, we could make different assumptions 

about the nature of growth in the domain under 

study than were made for our simple case. For 

example, one could hypothesize a growth model in- 

volving interaction terms or non -linear terms in 

aij. In this case, we would replace the mathema- 

tical model of equation (5) with a more complex 
model. As a result, the expression for would 

also become more complex. The basic derivation 

presented here, however, would remain unchanged. 
Let us now examine the alternative situation 

where an intervention has occurred between the 
pre- and post- tests. If we assume that the effect 
of the intervention is to increment uniformly the 
growth of all children in program j, then 

T = + Bai. + Mij + Uij + V. (9) 

where V. represents the incremental effect of ex- 

perimental program j, or what we have termed the 
.value-added by program j. From equations (5) and 
(9), we see that 

V. = (T ij - Tij) - 
Ai. 

(10) 

Thus, the value -added by program j, can be in- 

terpreted as the true difference (gain or change) 
score between pre- and post -test adjusted for the 
growth increment which is expected on the basis of 
natural maturation. Alternatively, Tij + may 

be interpreted as the post -test score predicted 
solely on the basis of natural maturation. From 

this point of view, T - (Tij + is a "re- 

sidual score;" i.e., the observed post -test minus 
a predicted post -test. 

B. Application to the Educational 
Quasi- Experiment 

Our goal in the value -added analysis is to 

estimate for each program a value- added, which 

is measure of the absolute program effect over 
and above what one might expect on the basis of 
natural maturation. Our model assumes that the 
true pre- and post -test scores can be represented 
as a function of age, measured covariates, and un- 
measured covariates. The model alsó assumes that 
the function is known. We now consider what can 
be done when each of two important assumptions 
(true scores known; growth model known) in this 
idealized situation is lifted. This will lead us 
to a way of implementing the value -added approach 
in practice. 

1. True Scores Known: First Approach 

The first problem that we encounter in apply- 
ing this model is that the true scores and 

Tij are rarely known. The first and obvious ap- 

proach is to substitute the observed pre- and 
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post -test scores, and Y in equations (5) 

and (9). For the pre -test, this yields 

Yij + Baij + Mij + Vij 
+ eij 

Similarly, for the post -test, 

Y -ij = + Bai. + M. + + V. + e (12) 

It follows from these last two equations that 

j 
J 

- eij (13) 

we may now define, Vij1, an individual value -added 

for subject i in program j, where 

V. = V. + e - eij (14) 

For any randomly selected individual i in 
treatment group j, 

2 
E (Vij 

1) 
= V. and Var (Vijl) = 2a 

e 
(15) 

Thus, each subject provides an unbiased estimate 
2 

of V. with variance 2a 

We can obtain a more efficient estimate of V. 
by pooling these individual estimates to obtain J 

an average across the n. subjects in treatment 

group j. This approach yields 

n. 

V.. = V.. (16) 
J1 i =1 

where, for any treatment group j, 

E(V.. 
2 

J1) = and Var (V.jl) = 2a (17) 

n. 

Like our individual subject estimate, our pooled 
estimate, unbiased, but the variance is 

now reduced to 2a /nj. Thus, the direct substi- 

tution of the observed pre- and post -test scores 
for the unknown true scores provides us with one 
approach for estimating the incremental effect of 
our experimental program. 

2. True Scores Unknown: Second Approach 

While the above approach is intuitively ap- 
pealing, we might ask whether we can obtain a 
better estimate of V. by some alternative approach. 

In particular, since the observed pre- and post- 
tests are measured with error, perhaps the substi- 
tution of 'an estimated or predicted true score 
might yield a more efficient estimate. Several 
approaches for estimating true scores have been 
reviewed by Cronbach and Furby (1970). Their 
"complete estimator" has intuitive appeal, and it 
merits further investigation. This estimator is 
quite complex, however, and its usefulness in the 
value -added approach is an unresolved question 
which is under further investigation. 

A simple and natural spin -off of this estima- 
ted true score approach would be the use of a pre- 

dicted pre -test score, generated from the 



observable components of equation (5). Simply, 

Yij = + Oa. + M. (18) 

Yij may be viewed as an alternative estimate for 

Tij. In terms of equation (5), 

Tij = Yij + Uij (19) 

As a second approach to dealing with the unknown 
true scores, we substitute the observed post -test 

score Y and the predicted pre -test score Y. 

into equation (10) for the unknown true scores. 
This yields, 

Y - (Yij = V. (20) 

We now have a second individual subject estimator, 
of the value -added for subject i in program Vij2, 

j, where 

Vij2 =V. +Uij +e (21) 

For any randomly selected individual i in 
treatment group j, 

2 E(V..2) =V. +U. and Var(V..2) =aU + a2e (22) 

Thus, each subject provides a biased estimate of 
V. (bias = U.) with variance 

2 2 +a 
Pooling these individual estimates across the 

n. subjects in treatment group j yields, 

n. 

V..2 Vij2 (23) 
i 

n. 

where, for any treatment group 1, 
2 

E(V.j2) =Vj +Uj and Var(V.j2) =a + (24) 

n. 

Thus, the pooled estimate, V.j2, is also biased, 

but it has reduced variance as compared to the 

individual subject estimates. 

3. Comparing the Two Estimates 

If we compare equations (17) and (24), we see 

that neither estimate of Vj, or V.j2 is 

clearly superior. V.j1 is unbiased, while V.j2 

is in general biased, except when U. =0; j= 1...J. 

On the other2hand, V.jl will have larger variance 
2 

if a > The mean square error (MSE), 

which combines both of these criteria, is a use- 

ful measure of the accuracy of an estimator. The 

MSE equals the sum of the variance and the bias 

squared. For our two estimators, 

2 
MSE = 2a (25) 

n. 

2 
2 2 

MSE (V.j2) + ae 
and 

n. 

Thus, in general, V.j1 is superior if 

2 2 2 
< a + nj (27) 

As we defined U. in our simple growth model 

of equation (5), it can be interpreted as the ex- 
pected residual pre -test score for individuals in 
group j over and above that which is linearly re- 
lated to all measured variables. Since the model 
includes a constant term u, we would expect U. to 

differ from 0 only if group j differs from the 
other groups in ways unrelated to measured covari- 
ates. If the covariates are selected carefully, 
however, it is unlikely that any U. will differ 

substantially from 0. Of course, if subjects are 
randomly assigned to treatment groups, there 
should not exist a priori differences between 
treatment groups in the expected values on any 
variables. As a result, U. will equal O. 

4. A Combined Estimate 

If V.jl and V.j2 were independent, then an 

appropriate linear combination of these two esti- 
mates would have a smaller mean square error than 
either one individually. Although V. and V. 

are clearly not independent, we may still realize 
a gain in accuracy by creating such a combined es- 
timate. This estimate would take the following 
general form: 

V.jc = w V. + (1 - w) V. 0 < w < 1 (28) 

It would clearly be desirable to choose w so as to 
minimize the mean square error of Note that 

E(V.jc) =wVj + (1 -w)(Vj + Uj) + (1 -w)Uj (29) 

which indicates that the combined estimate, V.j, 

has bias (1 - w)U.. Also, 

Var(V.jc)=w2 (2a2e) (1-w)2 (g2U+a2e) + 

nj 

2w(1 -w) Cov(V.j1,V.j2) 

For any treatment group j, if we assume that the 

Cov(V..1,V. . 2) = 0 for i i* then 

(30) 

n. 

Cov(V.j1,V.j2) Cov(Vij1,Vij2) (31) 

nj n. 

follows that 

2 Var(V.jc) = (1 +w2) a2e + (1 -w)2 (32) 

Thus, we can now write out the mean square error 
for V.. 

(26) 
MSE(V.jc)=(1-w2) a2e + (1-w)2 
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2 
+ Uj (33) 

n. 



If we minimize this with respect to w, we find 

2 

w = + nj 
opt 

a2 + 
n. 

(U.)2 

+ a2e 
If, as the result of randomization or by 

chance = 0, the expression for wopt simplifies 
to: 

(34) 

2 

wopt = a U 
(35) 

a2U + a2e 
Examination of this expression suggests that 

t 

can be interpreted in this case as a "residual re- 
liability" of the test after variation related to 
age and other measurable background variables has 
been removed. Thus, the weight to be placed on 
method 1, which uses the observed pre -test score, 
is simply the residual reliability of this score. 

Finally, up to this point, we have assumed 
2 2 

that the values of a a 
e' 

and Uj are known. In 

most quasi -experimental settings, however, these 
values are unknown. Thus, wopt must be estimated 

from the data. Two alternative procedures for es- 
timating wopt are presented in the Appendix. 

5. Growth Model Unknown 

To apply the value -added approach in the anal- 
ysis of an educational quasi -experiment, we need a 
growth model which accurately describes the pro- 
cess of "natural" maturation. The second major 
assumption in our theoretical model which we now 
lift is that the natural growth model is known. 

In this situation, we must develop a growth 
model and estimate the parameters of the model 
from either the quasi -experimental data or some 
alternative data set. This is a complex problem 
because the form of the growth model depends both 
upon the particular phenomenon under study and the 
conditions in the setting which bound this inves- 
tigation. As a result, no single approach to the 
construction of such models is likely to be uni- 
formly successful. We present here an approach 
developed by Smith (1973) and Weisberg (1973) 
which may prove useful in certain circumstances. 

The key assumption in this approach to esti- 
mating the growth model is that the variation dis- 
played in pre -test scores reflects developmental 
trends which can be directly related to age and 
other background variables. The heart of this ap- 
proach involves a causal linkage of the variation 
in age and the background variables to the varia- 
tion in pre -test scores. In particular, if the 
background variables are held constant, then the 
variation in pre -test scores may be expected to 
reflect only differences in the length of time ex- 
posed to the natural learning environment, or what 
we term age. More specifically, suppose we could 
look at a sub -sample of children with identical 
values on all measured background variables ex- 
cept age. Suppose then that we observe the mean 
score for such individuals as a function of age. 
The resulting curve based on this cross -sectional 
data is an approximation to the longitudinal 
growth curve that these children would actually 
display as they grow older. 
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This approach of attempting longitudinal in- 

ference from cross -sectional data is a general and 
well -known strategy. Kodlin and Thompson (1958) 
have considered the limitations of this approach 
in some detail. Under the conditions of a "stable 
universe" - i.e., a stable growth process - and a 
stable population across age levels, the cross - 

sectional approach can be used in place of the 
longitudinal for the estimation of mean growth. 
Thus, in settings where: 1) there are no signifi- 

cant external influences - other than the experi- 
mental intervention - to disturb the natural 
growth process; and 2) the pre -test sample is se- 
lected effectively at random with respect to age 
and the background variables; the cross -sectional 
approach should provide an excellent approximation 
to the natural growth curves. 

VI. Summary and Conclusions 

The basic idea of the value -added analysis is 
quite intuitive. We develop a growth model to 
predict normal growth in the absence of an experi- 
mental treatment. By combining this expected out- 
come with the observed outcome, we estimate the 
program effect - the growth increment over and 
above natural maturation. 

As one approach to estimating the natural 
growth model, we can assume a causal linkage be- 
tween the variation in age dad background vari- 
ables, and the variation in pre -test scores. If 

the research setting is stable, variation as a 
function of age will be attributable solely to 
growth, and not to other differences among age 
cohorts. In such a situation, we can estimate the 
effect of natural maturation for a treatment group, 
and the program effect over and above this natural 
growth. 

A particularly perplexing problem for tradi- 
tional techniques, such as ANCOVA, is the biased 
and inconsistent estimation of program effects re- 
sulting from measurement errors in the covariates 
(e.g., pre -test scores). Under the value -added 
model, however, measurement error in the pre -test 
will not bias estimates of the program effects. 

Further, we believe that the concept of the 
value -added effect is more meaningful than the ad- 
justed treatment mean differences in ANCOVA. The 
value -added is an absolute measure of program 
effect. Although control group data is useful as 
a check on the fitted mathematical model, it is 

not mandatory. Under the strong assumption that 
the growth model is correct, the value -added tech- 
nique generates a statistical control group. 

In a pre -school setting such as Head Start, 
for example, child's age from birth seems suitable 
to use in the growth model. In certain situations, 
our model may be applicable with other measures of 
"age." For example, suppose we were comparing a 
traditional and an experimental high school foreign 
language program. A logical choice here for "age 
at pre -test" might be the length of time studying 
the language via the traditional approach. 

Although we feel that the value -added approach 
is quite general, two factors cause difficulties 
in applying it in a school context. First, much 
testing in schools uses a standardized metric. 
Standardized tests do not allow measurement of ab- 
solute growth, only "relative standing." Our 
model in its present form would not be suitable 
for such a metric. Second, most schools have 



summer vacations, so that growth is not a strictly 
monotone function of chronological age or length 
of, exposure to schooling. We need to investigate 
thoroughly the effects of this summer discontinu- 
ity. The development of complex growth models 
incorporating such summer effects would make the 
value -added approach feasible. 

Although we hope that the methods described in 
this paper will provide analysts with a useful al- 
ternative to traditional adjustment strategies, we 
view this work as only a beginning. There are 
many possible extensions and refinements. For ex- 
ample, we need to develop realistic models to rep- 
resent growth in educational settings, and practi- 
cal ways of estimating model parameters. A better 
understanding of the sampling theory associated 
with our methods is needed, so that significance 
tests and confidence intervals can be obtained. 
Also, the development of quasi -experimental de- 
signs which facilitate this type of analysis 
should be pursued. Lastly, a critical problem 
with traditional adjustment strategies is that 
they implicitly embody a static model which con- 
ceptualizes a program effect as a constant incre- 
ment to a static base. Educational programs, on 
the other hand, are usually attempts to alter some 
developmental growth process. An intervention is 
typically a dynamic change in an on -going process. 
We view the value -added approach as a tentative 
effort to operationalize this conceptual approach 
in the analysis of quasi -experiments. 

*The use of a predicted post -test score might also 

be considered here. This is problematic because 

treatment effects must be included in the predic- 

ted post -test. In reality, there are numerous 

possible predicted or estimated true scores, such 

as the Cronbach and Furby estimates, which could 

be utilized in the value -added setting. Because 

of the introductory nature of this paper, we con- 

sider here only two simple approaches. 
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APPENDIX 

In this Appendix, we present two methods of 
estimating the optimal weight w in our combined 
estimator V.jc. Both of these methods assume that 

U. = 0 for all j, so that 

2 

wopt = . It is this quantity we wish 

+ a2e 

to estimate. If U. is substantially different 

from 0 for some j's, wopt may differ substantially 

from the true optimum given by equation (34). If 
measured covariates are selected judiciously, this 
is unlikely to occur. 

Estimator #1 
Suppose the reliability p of our outcome mea- 

sure Y (and Y') is known. Then, 

= 
V ) 

Let 

2 
+ a 

i 
+ M ) + 

U 
V(Yij) 

V(a + 
+ Mij) n2 

V(Y) 
Then 2 

2 

p = n + U 

p - n2 _ a2U = 

1 - n2 V(Y..)(1 -n2) opt 

From the regression analyses used to produce our 
2 

model, we obtain an estimate R2 of n . A natural 

V(Ylj) 
2 



estimator of wogt is thus given by 

= p .-R2 

1 - R2 

Estimator #2 

Our second estimator does not require 

dent information about p. From equations 

(32), we see that for any individual i in 

assuming U. = 0: 

V 2 

Var(V.. ) (l +w 
2 
) + (1-w 

2 
) 

U 

Ignoring sampling variation in the regression 

coefficients of our predictor equation, the Vijc's 

(for any value of w) are independent random vari 
ables. Thus, if we perform a one -way analysis of 
variance, using these as outcomes, the mean square 
error term provides an unbiased estimate, 

) of Var(Vijc). Since 

indepen- 
(29) and 
group j, 

Var(V. ) = 

nj 

wopt is the value of w which minimizes Var(V.. 
). 

It seems reasonable, then, to estimate wopt by the 

value of w which minimizes ). Let 

SS11 = EE(Vijl- V.jl)2 

SS = i(Vij2 - V.j2)2 

SS = - V.. )(V.. -V.2) 

Then the mean square error for the one -way ANCOVA 
is easily shown to be 

MSE = w2SS11 + (1 -w)2 SS22 + 2w(1 -w) SS12 

Minimizing this with respect to w, we find 
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SS22 - 

SS22 + SSi1 - 2SS12 


